使用 SAI 查询
该 SAI 快速入门 仅侧重于定义基于非主键列的多个索引(一个非常有用的功能)。让我们通过一些示例来探索其他选项,这些示例演示了如何在具有不同定义的 SAI 索引的表上运行查询。
SAI 仅支持 |
向量搜索
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE INDEX IF NOT EXISTS ann_index
ON cycling.comments_vs(comment_vector) USING 'sai';
使用 CQL 查询向量数据
要使用向量搜索查询数据,请使用 SELECT
查询
SELECT * FROM cycling.comments_vs
ORDER BY comment_vector ANN OF [0.15, 0.1, 0.1, 0.35, 0.55]
LIMIT 3;
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+----------------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-04-01 14:33:02.160000+0000 | LATE RIDERS SHOULD NOT DELAY THE START | [0.9, 0.54, 0.12, 0.1, 0.95] | Alex | 616e77e0-22a2-11ee-b99d-1f350647414a
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-02-17 08:43:20.234000+0000 | Glad you ran the race in the rain | [0.3, 0.34, 0.2, 0.78, 0.25] | Amy | 6170c1d0-22a2-11ee-b99d-1f350647414a
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-04-01 13:43:08.030000+0000 | Last climb was a killer | [0.3, 0.75, 0.2, 0.2, 0.5] | Amy | 62105d30-22a2-11ee-b99d-1f350647414a
限制必须为 1,000 或更少。 |
向右滚动结果显示与用于查询的嵌入最匹配的表中的评论。
单个索引匹配列
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'sai';
CREATE INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'sai';
CREATE INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'sai';
列 commenter
不是此表中的分区键,因此需要索引才能对其进行查询。
查询该列上的匹配项
SELECT * FROM cycling.comments_vs
WHERE commenter = 'Alex';
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+----------------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-04-01 14:33:02.160000+0000 | LATE RIDERS SHOULD NOT DELAY THE START | [0.9, 0.54, 0.12, 0.1, 0.95] | Alex | 6d0cdaa0-272b-11ee-859f-b9098002fcac
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
单个索引匹配列(带选项)
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE INDEX commenter_cs_idx ON cycling.comments_vs (commenter)
USING 'sai'
WITH OPTIONS = {'case_sensitive': 'true', 'normalize': 'true', 'ascii': 'true'};
区分大小写
列 commenter
不是此表中的分区键,因此需要索引才能对其进行查询。如果我们想将 commenter
作为区分大小写的值进行检查,我们可以将 case_sensitive
选项设置为 true
。
请注意,如果您在查询中使用不合适的区分大小写的值,则不会返回任何结果
SELECT * FROM comments_vs WHERE commenter ='alex';
id | created_at | comment | comment_vector | commenter | record_id
----+------------+---------+----------------+-----------+-----------
(0 rows)
当我们将骑车人姓名的案例更改为与索引中的案例匹配时,查询成功
索引匹配复合分区键列
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.rank_by_year_and_name (
race_year int,
race_name text,
cyclist_name text,
rank int,
PRIMARY KEY ((race_year, race_name), rank)
);
CREATE INDEX race_name_idx
ON cycling.rank_by_year_and_name (race_name)
USING 'sai';
CREATE INDEX race_year_idx
ON cycling.rank_by_year_and_name (race_year)
USING 'sai';
复合分区键具有由表中多个列定义的分区。通常,您需要在 WHERE
子句中指定分区键中的所有列才能查询表。但是,SAI 索引使您可以使用表中复合分区键中的单个列定义索引。如果需要根据单个列进行查询,可以在复合分区键中的每个列上创建 SAI 索引。
SAI 索引还允许您在不使用效率低下的 ALLOW FILTERING
指令的情况下查询表。ALLOW FILTERING
指令需要扫描表中的所有分区,导致性能低下。
race_year
和 race_name
列构成了 cycling.rank_by_year_and_name
表的复合分区键。
查询 race_name
列上的匹配项
SELECT * FROM cycling.rank_by_year_and_name
WHERE race_name = 'Tour of Japan - Stage 4 - Minami > Shinshu';
race_year | race_name | rank | cyclist_name
-----------+--------------------------------------------+------+----------------------
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 1 | Daniel MARTIN
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 2 | Johan Esteban CHAVES
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 3 | Benjamin PRADES
2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 1 | Benjamin PRADES
2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 2 | Adam PHELAN
2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 3 | Thomas LEBAS
查询 race_year
列上的匹配项
SELECT * FROM cycling.rank_by_year_and_name
WHERE race_year = 2014;
race_year | race_name | rank | cyclist_name
-----------+--------------------------------------------+------+----------------------
2014 | 4th Tour of Beijing | 1 | Phillippe GILBERT
2014 | 4th Tour of Beijing | 2 | Daniel MARTIN
2014 | 4th Tour of Beijing | 3 | Johan Esteban CHAVES
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 1 | Daniel MARTIN
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 2 | Johan Esteban CHAVES
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 3 | Benjamin PRADES
使用 AND 匹配多个索引
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'sai';
CREATE INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'sai';
CREATE INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'sai';
为表创建了多个索引,以演示如何查询多个列上的匹配项。
查询多个列上的匹配项,并且所有列都必须匹配
SELECT * FROM cycling.comments_vs
WHERE
created_at='2017-03-21 21:11:09.999000+0000'
AND commenter = 'Alex';
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+-----------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
使用 OR 匹配多个索引
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'sai';
CREATE INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'sai';
CREATE INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'sai';
为表创建了多个索引,以演示如何查询多个列上的匹配项。
查询任一列上的匹配项
SELECT * FROM cycling.comments_vs
WHERE
created_at='2017-03-21 21:11:09.999000+0000'
OR created_at='2017-03-22 01:16:59.001000+0000';
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+-----------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-03-22 01:16:59.001000+0000 | Great snacks at all reststops | [0.1, 0.4, 0.1, 0.52, 0.09] | Amy | 6d0fc0d0-272b-11ee-859f-b9098002fcac
使用 IN 匹配多个索引
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'sai';
CREATE INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'sai';
CREATE INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'sai';
为表创建了多个索引,以演示如何查询多个列上的匹配项。
查询值列表中列值的匹配项
SELECT * FROM cycling.comments_vs
WHERE created_at IN
('2017-03-21 21:11:09.999000+0000'
,'2017-03-22 01:16:59.001000+0000');
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+-----------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-03-22 01:16:59.001000+0000 | Great snacks at all reststops | [0.1, 0.4, 0.1, 0.52, 0.09] | Amy | 6d0fc0d0-272b-11ee-859f-b9098002fcac
用户定义类型
SAI 可以索引用户定义类型 (UDT) 或 UDT 列表。此示例演示了如何索引 UDT 列表。
此示例使用以下用户定义类型 (UDT)、表和索引
CREATE TYPE IF NOT EXISTS cycling.race (
race_title text,
race_date timestamp,
race_time text
);
CREATE TABLE IF NOT EXISTS cycling.cyclist_races (
id UUID PRIMARY KEY,
lastname text,
firstname text,
races list<FROZEN <race>>
);
CREATE INDEX races_idx
ON cycling.cyclist_races (races)
USING 'sai';
在 cycling.cyclist_races
表的 UDT 列表列 races
上创建索引。
使用 races
列列表中的 CONTAINS
进行查询
SELECT * FROM cycling.cyclist_races
WHERE races CONTAINS {
race_title:'Rabobank 7-Dorpenomloop Aalburg',
race_date:'2015-05-09',
race_time:'02:58:33'};
id | firstname | lastname | races
--------------------------------------+-----------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | Marianne | VOS | [{race_title: 'Rabobank 7-Dorpenomloop Aalburg', race_date: '2015-05-09 00:00:00.000000+0000', race_time: '02:58:33'}, {race_title: 'Ronde van Gelderland', race_date: '2015-04-19 00:00:00.000000+0000', race_time: '03:22:23'}]
(1 rows)
使用集合进行 SAI 索引
SAI 支持 map
、list
和 set
类型的集合。集合允许您将数据分组并存储在同一列中。
在关系数据库中,例如用户的多封电子邮件地址等分组是通过 (例如) user
表和 email
表之间的多对一连接关系实现的。Apache Cassandra 通过将用户的电子邮件地址存储在 user
表中的集合列中来避免两个表之间的连接。每个集合都指定了所保存数据的类型。
如果要存储的集合数据有限,则集合是合适的。如果数据具有无限的增长潜力,例如每秒发送的消息或注册的传感器事件,请不要使用集合。相反,请使用具有复合主键的表,其中数据存储在聚簇列中。
在具有 SAI 索引的数据库表的 CQL 查询中,
|
使用 set 类型
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.cyclist_career_teams (
id UUID PRIMARY KEY,
lastname text,
teams set<text>
);
CREATE INDEX teams_idx
ON cycling.cyclist_career_teams (teams)
USING 'sai';
在 cyclist_career_teams
表的 set 列 teams
上创建索引。
使用 teams
列中的 CONTAINS
进行查询
SELECT * FROM cycling.cyclist_career_teams
WHERE teams CONTAINS 'Rabobank-Liv Giant';
id | lastname | teams
--------------------------------------+----------+------------------------------------------------------------------------------------------------------
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | VOS | {'Nederland bloeit', 'Rabobank Women Team', 'Rabobank-Liv Giant', 'Rabobank-Liv Woman Cycling Team'}
使用 list 类型
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.upcoming_calendar (
year int,
month int,
events list<text>,
PRIMARY KEY (year, month)
);
CREATE INDEX events_idx
ON cycling.upcoming_calendar (events)
USING 'sai';
在 upcoming_calendar
表的 list 列 events
上创建索引。
使用 events
列中的 CONTAINS
进行查询
SELECT * FROM cycling.upcoming_calendar
WHERE events CONTAINS 'Criterium du Dauphine';
year | month | events
------+-------+-----------------------------------------------
2015 | 6 | ['Criterium du Dauphine', 'Tour de Sui\nsse']
一个稍微复杂的查询选择包含特定事件或具有特定月份日期的行
使用 map 类型
此示例使用以下表和索引
CREATE TABLE IF NOT EXISTS cycling.cyclist_teams (
id uuid PRIMARY KEY,
firstname text,
lastname text,
teams map<int, text>
);
CREATE INDEX IF NOT EXISTS team_year_keys_idx
ON cycling.cyclist_teams ( KEYS (teams) );
CREATE INDEX IF NOT EXISTS team_year_entries_idx
ON cycling.cyclist_teams ( ENTRIES (teams) );
CREATE INDEX IF NOT EXISTS team_year_values_idx
ON cycling.cyclist_teams ( VALUES (teams) );
在 cyclist_career_teams
表的 map 列 teams
上创建的索引针对列数据的键、值和完整条目。
使用 teams
列中的 KEYS
进行查询
SELECT * FROM cyclist_teams WHERE teams CONTAINS KEY 2014;
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | Marianne | VOS | {2014: 'Rabobank-Liv Woman Cycling Team', 2015: 'Rabobank-Liv Woman Cycling Team'}
从映射 teams
列中查询一个值,注意只包含关键字 CONTAINS
SELECT * FROM cyclist_teams WHERE teams CONTAINS 'Team Garmin - Cervelo';
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
从映射 teams
列中查询条目,注意 WHERE
子句中的差异
SELECT * FROM cyclist_teams
WHERE
teams[2014] = 'Boels:Dolmans Cycling Team'
AND teams[2015] = 'Boels:Dolmans Cycling Team';
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
此示例查找映射 teams
列中存在两个条目的行。
有关更多信息,请参见